The human intestine harbors trillions of microorganisms that are essential to human health. Collectively referred to as the **gut microbiome**, this complex ecosystem consists of commensal archaea, eukarya, bacteria, viruses, and fungi that facilitate the anaerobic oxidation of complex carbohydrates to promote digestion and nutrient absorption. The composition of the microbiome varies dramatically from person to person and depends on numerous factors, including diet, age, gender, the presence of stressors, and geographic location [1].

Military personnel deployed to areas of the developing world often experience gastrointestinal illnesses from exposure to environmental bacteria that take up residence in the gut and cause dysbiosis [2]. Interestingly, the microbiome influences an array of physiological processes well beyond the intestinal tract and the U.S. Department of Defense (DoD) is actively engaged in research efforts to exploit the microbiome to optimize warfighter health and performance [3-5].

A Gut Shield System to Prevent Enteric Infections

Acute enteric infections and diarrheal illness—also known as disease non-battle injuries—afflict approximately 30% of warfighters per month during deployment to parts of the developing world [2]. Enteric infections may be underappreciated and viewed as more of an inconvenience rather than a formal injury; however, they result in lost duty days, decreased performance, and healthcare costs [6]. One strategy to mitigate this disease burden is to deliver cross-reactive antibodies to the gut that bind toxic non-commensal bacterial proteins, creating a **gut shield system** within the warfighter [5].

To this end, researchers at the Naval Medical Research Center recently partnered with Immuron Limited to evaluate the efficacy of an antibody-containing supplement to prophylactically combat bacillary dysentery in non-human primates [7]. The orally administered antibody protected against clinical shigellosis in 75% of animals compared to placebo—supporting the use of targeted antibodies for the prevention of enteric disease.

The Microbiome’s Impact on Vaccine Efficacy

Microbial metabolites produced in the gut enter circulation where they directly impact the immune response, the perception of pain, inflammation, and other aspects of human health in ways that are not well understood [8]. For instance, some reports suggest a link between microbiome composition and the efficacy of certain vaccines [9, 10]. In infants and adults, a higher relative abundance of the phylum Firmicutes is associated with higher humoral responses to oral vaccines [9]. Interestingly, the bacterial protein flagellin, which is abundantly present in the gut, is necessary to activate mammalian toll-like receptor 5 (TLR5) and stimulate the production of antiviral antibodies following influenza vaccination [11]. In contrast, germ-free mice deficient in TLR5 had poor serological responses to influenza vaccination.

It’s apparent that the microbiome and the humoral immune response develop in parallel and it’s possible that seemingly innocuous genetic variances may have complex immunological consequences due to different interactions with bacterial products produced in the gut. The DoD recognizes the significance of these reports and has a keen interest in developing high-efficacy vaccines that synergize with the microbiome to protect military personnel from high-risk pathogens.

Military Stressors and Microbiome Composition

In 2018, Dr. J. Philip Karl of the U.S. Army Research Institute of Environmental Medicine announced a collaborative research effort at the 1st Annual DoD Gut Microbiome Informational Meeting to characterize the relationship between...
military stressors, gut microbiome composition, and warfighter performance [5]. Dr. Karl and collaborators demonstrated that prolonged exposure to physiological stress led to changes in microbiome composition and increased intestinal permeability in young adults [12].

Increased intestinal permeability has been linked to the development of cardiovascular disease [13], psychiatric disorders [14], autoimmune disease [15], inflammatory bowel disease [16], and a host of other health complications. Fortunately, the microbiome is a malleable target that can be manipulated with a fiber-rich diet to build resiliency toward military stressors like sleep deprivation, exposure to environmental extremes, and prolonged physical activity. Diet was the primary tool identified by Dr. Karl and his team that will be used by the U.S. Army to manipulate the gut microbiome in future studies relating to inflammation, innate immunity, and gut permeability.

Conclusion

The gut microbiome is a dynamic and highly complex entity that engages with multiple aspects of human physiology and influences the efficacy of certain vaccines. Poor gut health is intimately tied to a menagerie of disease states, such as enteric infections and intestinal permeability, that can dramatically impact warfighter health and performance. Regular consumption of probiotics and nutritional prebiotics may help mitigate the health consequences associated with military stressors, although further work is required to establish the efficacy of this approach. Looking ahead, synthetic biology and genetic engineering may provide a novel means toward manipulating the intestinal microbiota and advance DoD efforts to improve warfighter health both on and off the battlefield.

REFERENCES

Spotlight

Figure 1. A select number of anatomical sites influenced by the gut microbiome (Source: U.S. Department of Veterans Affairs)

DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

BIOGRAPHIES

Kyle E. Giesler, Ph.D.
Postdoctoral Scholar, University of California, Berkeley

Kyle E. Giesler is a postdoctoral scholar at the University of California, Berkeley investigating non-viral delivery strategies for CRISPR/Cas9 and other emerging biologics. He received his Ph.D. in medicinal chemistry from Emory University under the tutelage of Dennis Liotta where he designed novel small molecules for the treatment of HIV and other chronic viral infections. From 2015 to 2017, he interned with the former Senior Vice President and Chief Patent Counsel at GlaxoSmithKline, Sherry Knowles. His research interests include pharmacology, drug delivery, immunology, virology, stereoelectronic effects, and high-risk drug discovery ventures. He also has a keen interest in medical research relating to military operations, regenerative medicine, medical countermeasures, and CBRN defense strategies.

John M. Saindon, Ph.D.
Senior Health Security & CBRNE/WMD Advisor

John M. Saindon is a senior medical and CBRNE/WMD advisor with over 15 years of domestic and international experiences. He received his Ph.D. and a second doctorate degree (DrHSc) in the Health Sciences from Nova Southeastern University. He also has a clinical laboratory specialization in medical technology from George Washington University. Saindon has served in multiple health security and CBRNE/WMD non-proliferation roles while deployed to Africa, Asia, and the Middle East. His research interests are in health security, emerging medical therapies on and off the battlefield, CBRN preparedness, and WMD non-proliferation.

ABOUT THIS PUBLICATION:

All information regarding non-federal, third party entities posted on the HDIAC website shall be considered informational, aimed to advance the Department of Defense Information Analysis Center (DoDIAc) objective of providing knowledge to the U.S. Government, academia, and private industry. Through these postings, HDIAC’s goal is to provide awareness of opportunities to interact and collaborate. The presence of non-federal, third party information does not constitute an endorsement by the DoD or HDIAC of any non-federal entity or event sponsored by a non-federal entity. The appearance of external hyperlinks in this publication and reference herein to any specific commercial products, processes, or services by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or HDIAC. HDIAC is a DoD sponsored IAC, with policy oversight provided by the Under Secretary of Defense for Research and Engineering (USD (R&E)), and administratively managed by the Defense Technical Information Center (DTIC). For permission and restrictions on reprinting, please contact publications@hdiac.org. Any views or opinions expressed on this website do not represent those of HDIAC, DTIC, or the DoD.